A Geostatistical Study in Support of CO2 Storage in Deep Saline Aquifers of the Shenhua CCS Project, Ordos Basin, China

نویسندگان

  • Minh C. Nguyen
  • Ye Zhang
  • Jun Li
  • Xiaochun Li
  • Bing Bai
  • Haiqing Wu
  • Ning Wei
  • Philip H. Stauffer
چکیده

The Shenhua Carbon Capture and Storage (CCS) project at the Shenbei Slope injection site in North Yulin is the first 100,000 tonper-year scale CCS pilot project in China with an injection operation lasting nearly 3 years. In this study, we investigate various geostatistical methods and their impact on the respective geologic models on which simulation is performed to understand the phenomena observed during 3 years of Shenhua CCS operations. Although there was a brief period of wellhead pressure increase at the injection well, it unexpectedly dropped for most of the time. Another interesting observation showed that the majority of CO2 gas injection was received by the topmost sandstone Liujiagou formation instead of the basement limestone Majiagou formation, which was predicted to have much more injectivity and storage capacity. Based on the current geostatistical methods and available data, 3 steps of reservoir modeling and flow simulation are carried out and they go from having homogeneous property models to incorporating standard 2-point geostatistical methods to using object-based models. The layer-cake models generate a rather uniform plume shape and increased pressure response. Meanwhile, two-point statistical models add more complexity to the size and shape of CO2 plume, however are not capable of reproducing the pressure decline behavior. These results demonstrate homogeneous and 2-point geostatistical models are inadequate in interpreting subsurface heterogeneity, both due to their method and data limitations. Further work is being done with object-based models to produce a system of meandering rivers based on the geological concept of Shenhua injection site. This will help offset the data limitation and bring our model closer to geologic reality. © 2017 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the organizing committee of GHGT-13. * Corresponding author. Tel.: +1 (720) 209-1997; fax: +1 (307) 766-6679. E-mail address: [email protected] 2 M.C. Nguyen et al. / Energy Procedia 00 (2017) 000–000

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Economics of CO2 Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs

Large reductions in carbon dioxide (CO2) emissions are needed to mitigate the impacts of climate change. One method of achieving such reductions is CO2 capture and storage (CCS). CCS requires the capture of carbon dioxide (CO2) at a large industrial facility, such as a power plant, and its transport to a geological storage site where CO2 is sequestered. If implemented, CCS could allow fossil fu...

متن کامل

The Footprint of the CO2 Plume during Carbon Dioxide Storage in Saline Aquifers: Storage Efficiency for Capillary Trapping at the Basin Scale

We study a sharp-interface mathematical model of CO2 migration in deep saline aquifers, which accounts for gravity override, capillary trapping, natural groundwater flow, and the shape of the plume during the injection period. The model leads to a nonlinear advection–diffusion equation, where the diffusive term is due to buoyancy forces, not physical diffusion. For the case of interest in geolo...

متن کامل

Reservoir Simulation of CO2 Storage in Deep Saline Aquifers

We present the results of compositional reservoir simulation of a prototypical CO2 sequestration project in a deep saline aquifer. The objective was to better understand and quantify estimates of the most important CO2 storage mechanisms under realistic physical conditions. Simulations of a few decades of CO2 injection followed by 10 to 10 years of natural gradient flow were done. The impact of...

متن کامل

Influence of Geological Parameters on Co2 Storage Prediction in Deep Saline Aquifer at Industrial Scale

Here we examine the consequences of uncertainty with respect to geological parameters, using large-scale 2D models. We also investigate ways to reduce prediction uncertainty, either by showing how a parameter’s influence is negligible for a given project design, or by showing for which parameters additional data will significantly increase the quality of prediction. TOUGH2/ECO2N is used to simu...

متن کامل

Scaling Behavior of Convective Mixing, with Application to Geological Storage of CO2

CO2 storage in deep saline aquifers is considered a possible option for mitigation of greenhouse gas emissions from anthropogenic sources. Understanding of the underlying mechanisms, such as convective mixing, that affect the long-term fate of the injected CO2 in deep saline aquifers, is of prime importance. We present scaling analysis of the convective mixing of CO2 in saline aquifers based on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016